國外學者根據貝氏體相變理論對貝氏體鋼進行了大量的研究,設計了不同成分的鋼種和生產工藝,形成了不同系列的貝氏體鋼,大大推動了貝氏體鋼的發展及其應用。
20世紀50年代,英國人P.B.Pickering等發明了Mo2B系空冷貝氏體鋼。Mo與B的結合可以使鋼在相當寬的連續冷卻速度范圍內獲得貝氏體組織。由于生產成本較高,因此該鋼種的發展受到一定限制。
日本東京鋼公司研制了低碳含V貝氏體非調質鋼,該鋼鍛后空冷得到以貝氏體為主及少量鐵素體和珠光體的顯微組織,其抗拉強度達到800~1000MPa,室溫沖擊韌性為50J/cm2,而-40℃沖擊韌性仍高達40J/cm2。日本新日鐵公司在貝氏體非調質鋼的研究開發中多添加微合金化元素,這類鋼在很寬的冷卻速度范圍內都可獲得貝氏體組織,并可獲得更好的低溫性能,適合于強度高、韌性好的汽車行走系部件。
F.G.Caballelo等在設計高強度貝氏體鋼的研究中,設計了Fe20.2C22Si23Mn和Fe20.4C22Si24Ni兩種鋼成分。研究發現,Fe20.2C22Si23Mn貝氏體鋼表現出良好的斷裂韌性,強度可以達到1375~1440MPa;而增加碳含量,即Fe20.4C22Si24Ni成分的貝氏體鋼強度可達1500~1840MPa,其斷裂韌性稍低,但仍然要高于高強度馬氏體鋼。這兩種鋼均需回火處理。美國聯邦鐵路管理局與Tuskegee大學聯合開發的低碳貝氏體鋼軌鋼,其極限強度、屈服強度、延伸率分別為1500MPa、1100MPa和13%,比相同條件下的珠光體鋼性能要高,且具有良好的斷裂韌性(KIc=150MPa.m1/2),其值是相同條件下珠光體鋼斷裂韌性的115倍。
低碳微合金化控軋控冷貝氏體鋼研制成功后,受到工程界的注意,逐步得以推廣應用。在此基礎上發展了超低碳的控軋控冷貝氏體鋼(ULCB鋼,含碳量小于0.05%)。McEvily于1967年研制出采用Mn、Mo、Ni、Nb合金化的ULCB鋼,經熱機械控制(TMCP)處理后,屈服強度達到700MPa,且具有良好的低溫韌性和焊接性能。日本鋼鐵公司研制了X70和X80超低碳控軋貝氏體鋼,其屈服強度高于500MPa,脆性轉變溫度(FATT)小于-80℃,它既可以作為低溫管線鋼,也可作為艦艇系列用鋼。DeArDo等開發出ULCB2100型超低碳貝氏體中厚鋼板(含碳量低于0.03%),通過控軋控冷處理和高度合金化實現細晶強化、彌散強化與位錯強化的綜合作用。該鋼種以80%累積變形量進行精軋并隨后空冷,其屈服強度可高達700MPa,且FATT可提高到-50℃。
巴西學者通過模擬高強低合金貝氏體鋼的控軋控冷工藝過程,研究了控軋控冷工藝參數對其微觀組織和力學性能的影響,發現軋制后冷卻速率與終軋溫度是主要的控制工藝參數。波蘭學者研究了在熱軋、淬火及回火加工條件下超低碳貝氏體鋼的微觀組織與力學性能,研究表明,可以獲得屈服強度大于650MPa、低溫沖擊性能為200J(213K)的應用于造船、海上石油鉆采平臺、壓力容器及高性能結構部件的超低碳貝氏體鋼板。
近代工業發展對熱軋非調質鋼板的性能要求越來越高,除了具有高強度外,還要具有良好的韌性、焊接性能及低的冷脆性。目前世界上許多國家都利用(超)低碳的控軋控冷貝氏體鋼生產高寒地區使用的輸油、輸氣管道用鋼板、低碳含鈮的低合金高強度鋼板、高韌性鋼板,以及造船板、橋梁鋼板、壓力容器用鋼板等。